Approach to Subepithelial Lesions

ACG Postgraduate Course
October 13th, 2013

Jonathan M. Buscaglia, MD
Associate Professor of Medicine
Director, Interventional Endoscopy Program
School of Medicine, Stony Brook University

Objectives

• Review the epidemiology and pathology of the major subepithelial lesions in the GI tract

• Discuss various approaches to the diagnosis and management of these lesions
Background

• Subepithelial lesions are frequently encountered
 – ~1% of EGD procedures diagnose a subepithelial lesion
 – ~13% of lesions are malignant at diagnosis
 – Many lesions are benign, but have malignant potential

• Most lesions are discovered incidentally

• Most likely symptom is anemia and/or GI bleeding
 – Other symptoms include abdominal pain and obstruction

M:F ratio=1; most patients >50 years old

CT/MRI/US usually not sensitive enough to detect and characterize most subepithelial lesions

EUS is able to:
 – Differentiate extramural compression from intramural growth
 – Determine layer of origin
 – Accurately measure size
 – Evaluate for regional lymphadenopathy
 – Obtain tissue
 – Help to determine appropriate management
Normal Gastrointestinal Wall Layers

Radial EUS Imaging

Mary Lee Krinsky, DO and Kenneth Binmoeller, MD

ACG 2013
ACG Postgraduate Course • October 12-13, 2013

Differential Diagnosis

<table>
<thead>
<tr>
<th>Pathology</th>
<th>Muscularis Mucosa</th>
<th>Submucosa</th>
<th>Muscularis Propria</th>
<th>Serosa</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIST</td>
<td>x</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Leiomyoma</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Lipoma</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Granular Cell Tumor</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pancreatic Rest</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Carcinoid (NET)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Duplication Cyst</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Fibroid lesion</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Varices</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Lymphangioma</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Neural Tumors (e.g. Schwannoma)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Differential Diagnosis

<table>
<thead>
<tr>
<th>Pathology</th>
<th>Muscularis Mucosa</th>
<th>Submucosa</th>
<th>Muscularis Propria</th>
<th>Serosa</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIST</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leiomyoma</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Lipoma</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Granular Cell Tumor</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pancreatic Rest</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carcinoid (NET)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duplication Cyst</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Fibroid lesion</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Varices</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Lymphangioma</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Neural Tumors (e.g. Schwannoma)</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GIST Lesion

- **Originate from the interstitial cells of Cajal (MP layer)**

- **Gain of function mutation in \textit{KIT} gene \rightarrow activation of the \textit{c-kit} protein (tyrosine kinase receptor)1

- **IHC staining is positive for CD117 in 95% cases (corresponds to c-kit activation)**

- **All have malignant potential**

GIST Lesion

GIST Lesion
GIST Lesion

• Higher risk of malignancy1-3
 – Lesion size >3cm on EUS
 – Intestinal (jejunum) >> gastric lesions
 – Mitotic rate >5-10/50 HPF

<table>
<thead>
<tr>
<th>Risk of Malignancy</th>
<th>Size</th>
<th>Mitotic Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very low</td>
<td><2cm</td>
<td><5/50 HPF</td>
</tr>
<tr>
<td>Low</td>
<td>2-5cm</td>
<td><5/50 HPF</td>
</tr>
<tr>
<td>Moderate</td>
<td><5cm</td>
<td>6-10/50 HPF</td>
</tr>
<tr>
<td></td>
<td>>5cm</td>
<td><5/50 HPF</td>
</tr>
<tr>
<td>High</td>
<td>>5cm</td>
<td>6-10/50 HPF</td>
</tr>
<tr>
<td></td>
<td>Any size</td>
<td>>10/50 HPF</td>
</tr>
</tbody>
</table>

GIST Lesion

• Management:
 – Symptomatic lesions \Rightarrow surgical resection**
 – Asymptomatic, large lesions (>2cm) \Rightarrow surgical resection**
 – Asymptomatic, small lesions (<2cm):
 • Annual EGD/EUS for surveillance vs. surgical resection

*Simultaneous referral to medical oncologist for consideration of adjuvant therapy with Imatinib (Gleevec®) for high risk lesions
Leiomyoma

• Originate from the MP layer (occasionally MM layer)

• Most common location is the mid-distal eophagus

• IHC staining is negative for CD117, CD34, and s100
 – Positive for desmin and α-smooth muscle actin proteins

• Risk of malignancy is extremely rare

Leiomyoma
Leiomyoma

• Management:
 – Surveillance EGD/EUS every 1-2 years\(^1\)
 • For asymptomatic, small lesions (<1-2cm)
 – Surgical resection
 • Symptomatic, enlarging, structural changes during surveillance
 – Endoscopic resection
 • Small lesions (<2cm) arising from the MM layer on EUS exam

Lipoma

• Fatty tumors arising from the SM layer
• Most commonly occur in the colon and gastric antrum
• Positive “pillow sign” • 98% specific for lipoma\(^1\)
• Essentially no malignant potential
• Characteristic EUS features
• Jumbo biopsies often reveal yellow, adipose tissue\(^2\)

Lipoma

- Fatty tumors arising from the SM layer
- Most commonly occur in the colon and gastric antrum
- Positive "pillow sign" 98% specific for lipoma
- Essentially no malignant potential
- Characteristic EUS features
 - Jumbo biopsies often reveal yellow, adipose tissue

ACG Postgraduate Course • October 12-13, 2013
Lipoma

- Fatty tumors arising from the SM layer
- Most commonly occur in the colon and gastric antrum
- Positive "pillow sign" 98% specific for lipoma
- Essentially no malignant potential
- Characteristic EUS features
- Jumbo biopsies often reveal yellow, adipose tissue

Granular Cell Tumor

- GCTs are of Schwann cell in origin
- Arise from the MM or SM layer
- Most GI tract GCTs are located within the esophagus
- Risk of malignancy is extremely low
 - ~2-4% at time of diagnosis; all >4cm in size

Management:
- Small lesions (<1cm) → annual EGD exam
- Large lesions (>2cm) → surgical resection
- Intermediate lesions (1-2cm) → surveillance EGD exams vs. endoscopic resection

Pancreatic Rest

- Prevalence of 1-2% in autopsy studies
- 90% located in the stomach; mostly gastric antrum
- Symptoms present in minority of patients:¹
 - Ulceration and pain
 - Pancreatitis
 - Bleeding
 - Gastric outlet obstruction
 - Dysphagia
- Characteristic central umbilication on endoscopy
- Arise from the SM layer on EUS
- Essentially no malignant potential

Carcinoid Tumor

• Most frequent neoplasm of the small intestine (ileum>jejunum>duodenum)\(^1\)
 – Small bowel accounts for 25% of all carcinoids

• Slight female predominance (M:F ratio=1:1.6)

• Originate from mucosal layer and penetrate deep

• Gastric carcinoids account for 9% of all carcinoids\(^2\)
 – 3 subtypes of gastric carcinoids
 – Varying levels of malignant potential

Gastric Carcinoid Tumors

• Type I: associated with atrophic gastritis, pernicious anemia and hypergastrinemia
 – Low malignant potential

• Type II: associated with MEN 1, Zollinger-Ellison Syndrome, and hypergastrinemia
 – Intermediate malignant potential

• Type III: sporadic form, normal gastrin levels
 – High malignant potential

Management of Gastric Carcinoid Tumors

• Type I and II lesions (hypergastrinemia):
 – Endoscopic resection for small lesions, <1-2cm
 – Surgical resection for large lesions, or multiple lesions (>5)
 – Consideration or surgical antrectomy or fundectomy
 • Removal of G-cells or ECL cells, respectively
 – Surveillance EGD every 6-12 months

• Type III lesions (normal gastrin levels):
 – Surgical resection with lymph node dissection\(^1\)

Rectal and Duodenal Carcinoid Tumors

• Management of rectal tumors:\(^1\)
 – Small lesions (<1cm), confined to SM • endoscopic resection
 – Large lesions (>2cm), or invasion to MP layer, or regional lymph node involvement • surgical resection
 – Intermediate lesions (1-2cm), confined to SM • endoscopic vs. surgical resection

• Management of duodenal tumors:
 – No guidelines exist for non-ampullary tumors
 – Reasonable to adopt the same approach to rectal lesions

Rectal and Duodenal Carcinoid Tumors

Management of rectal tumors:

- Small lesions (<1cm), confined to SM: endoscopic resection
- Large lesions (>2cm), or invasion to MP layer, or regional lymph node involvement: surgical resection
- Intermediate lesions (1-2cm), confined to SM: endoscopic vs. surgical resection

Management of duodenal tumors:

- No guidelines exist for non-ampullary tumors
- Reasonable to adopt the same approach to rectal lesions

Rectal and Duodenal Carcinoid Tumors

Management of rectal tumors:
- Small lesions (<1cm), confined to SM: endoscopic resection
- Large lesions (>2cm), or invasion to MP layer, or regional lymph node involvement: surgical resection
- Intermediate lesions (1-2cm), confined to SM: endoscopic vs. surgical resection

Management of duodenal tumors:
- No guidelines exist for non-ampullary tumors
- Reasonable to adopt the same approach to rectal lesions

Rectal and Duodenal Carcinoid Tumors

Management of rectal tumors:
1. Small lesions (<1 cm), confined to SM: endoscopic resection
2. Large lesions (>2 cm), or invasion to MP layer, or regional lymph node involvement: surgical resection
3. Intermediate lesions (1 - 2 cm), confined to SM: endoscopic vs. surgical resection

Management of duodenal tumors:
- No guidelines exist for non-ampullary tumors
- Reasonable to adopt the same approach to rectal lesions

Algorithm for the Approach to Subepithelial Lesions

EGD
- Biopsy overlying mucosa
- Estimation of lesion size

Lesion<1cm ➔ Repeat EGD in 1 year

Lesion>1cm ➔ EUS

EUS
- Characterize the lesion
- Evaluate for signs of malignancy
- Tissue acquisition for definitive Dx

Growing in size, Or >1cm ➔ No

Methods of Tissue Acquisition
- EUS-FNA\(^1\) or EUS-FNB (core needle)
- Tunneled, jumbo biopsy forceps\(^2\)
- Unroofing, enucleation, other techniques\(^3,4\)
- Endoscopic resection

Significant Malignant Potential
- yes ➔ Surgery
- no ➔ Endoscopic Surveillance
